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It is shown that there exist non-Boolean unital and countable quan tum logics 
which are Jauch-Piron.  

1. INTRODUCTION 

The cardinality of Jauch-Piron logics appears to be a very important 
aspect of the doctrine of the Jauch-Piron property (Jauch, 1968; Piron, 
1976). 

The finiteness conditions ensuring that a Jauch-Piron logic is a Boolean 
algebra were examined by Riittimann (1977), Bunce et aL (1985), and 
Rogalewicz (1991). The definitive result was obtained by Rogalewicz, w h o  
showed that the number of blocks of a unital Jauch-Piron" orthomodular 
poset is finite if and only if it equals 1. 

On the other hand, Pt~ik and Pulmannov~i (1989, 1991) conjectured 
that there are non-Boolean unital and countable Jauch-Piron logics. They 
supposed that the corresponding examples might be fairly complicated. 

A celebrated theorem of Gleason (1957) yields almost appropriate 
examples, but unfortunately, uncountable ones. 

In the present paper we develop a technique of countable models of 
orthomodular lattices to prove the existence of non-Boolean countable 
subortholattices of the orthomodular lattice of all subspaces of ff~", n -> 3, 
inheriting the Jauch-Piron property. Of course, such logics are necessarily 
unital. 

2. COUNTABLE MODELS OF ORTHOMODULAR LATrICES 

Recall that an orthomodular poset (OMP) (e.g., Ptfik and Pulmannovfi, 
1991) is a poset E with the greatest element 1 and an involutive antiauto- 
morphism ': E-~ E satisfying the following conditions: 
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(i) x ~ E ~ x + x ' = l .  
(ii) x, yEE,  x<~ y ~  3 z e E ( y = x  + z). 

(iii) x, y~E,  x .L y ~  x + y exists. 
(Here for x, y e E we write x • y provided x < y '  and denote by x + y the 
supremum of x and y in the case x 3_ y.) 

Obviously  0 d~ 1' is the smallest element of an O M P .  
An o r thomodu la r  lattice (OML)  (e.g., Kalmbach ,  1983) is an O M P  

that  is a lattice. 
Let E be an OMP.  A funct ion f :  E ~ ~ is referred to as a finitely 

addit ive one provided  

x, y 6 E ,  x_Ly ~ f ( x + y ) = f ( x ) + f ( y )  

Let F (E)  denote the set of  all finitely additive functions f :  E-- ,  N that  
are bounded  (i.e., satisfy the condi t ion supx~e If (x) l  < +oo) .  Then F(E) is 
obviously a vector space over ~ with respect to pointwise addit ion and 
multiplication with scalars. [Moreover ,  F(E) is a Banach space with respect 
to the no rm [[f[[ = SUpx~E If(x)[  (76 F (E) ) . ]  

A finitely additive state on E is a finitely additive funct ion f :  E ~ 
such that  f ( E )  c [0, +oo) and f (1 )  = 1. Let S ( E )  denote  the set o f  all finitely 
additive states on E. Obviously  S(E)  is a convex subset o f  F(E).  

Let L be an O M L .  A subset L 0 c L is said to be a subortholat t ice of 
L if Lo is a sublattice of L, 1 e Lo and x e Lo =~ x '  e Lo. 

Definition 2.1. A model  o f  L is a subortholat t ice Lo of  L such that  any 
f ~  S(Lo) can be uniquely  extended to an element o f  S(L). 

N o w  we state the main  result o f  this section. 

Theorem 2.2. I f  F(L)  is finite-dimensional,  then there exists a countable  
model  o f  L. 

We start with two simple remarks o f  a very general character.  
Let f~ be a set and V be a f inite-dimensional subspace o f  the vector  

space R a o f  all funct ions f :  12 ~ • ( throughout ,  ope ra t ions  on funct ions as 
vectors are supposed  to be pointwise) and suppose  dim V = m. Let us endow 
12 with the topo logy  induced  by V (i.e., the weakest  topo logy  in 12 with 
respect to which all funct ions f c  V are cont inuous) .  

Remark2.3. There exists an m-element  set A c 12 such that  any funct ion 
f :  A ~ N can be uniquely  extended to a funct ion f rom V. 

Proof By induct ion,  for each k c { 0 , . . . ,  m} there exists Ak c 12 such 
that  card Ak = k and any funct ion f :  Ak ~ R can be extended to a funct ion 
f rom V. Put A = A m .  Q E D  

Remark 2.4. The topological  space 12 has a countable  base. In par- 
ticular, 12 is separable. 
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Proof Take basic vectors e , , . . . ,  em�9 V. Consider finite intersections 
of  sets that are of the form eT~((a, b)), a, b ~ R being rational. QED 

Next, suppose dim F(L) = m. We endow L with the topology induced 
by F(L). By Remark 2.3, there exists an m-element A c  L such that any 
function f :  A-+R can be uniquely extended to a function from F(L). By 
Remark 2.4, there exists a countable and dense B c L satisfying A c B. Put 

U = {f: L ~  [ - 1 ,  1 ] l a  ~ {o} c f - l ( o ) }  

and 

where 

A = F o w F  

ro = {{x, x'}jx e L\{0, 1}} 

F = {{x, y, z}~  L\{O}lx+y+z = 1} 

Remark 2.5. Let f :  L ~  ~. It is easy to verify that f is finitely additive 
if and only if f ( 0 ) = 0  and a e h ~Y.x~ ~ f(x)=f(1).  (The assertion as well 
as the following lemma can be extended to arbitrary OMPs.) 

Lemma 2.6. For every x e L and e > 0 there exists a finite set Ax# c A 
satisfying 

f � 9  V a � 9  ~ [f(x)]<e 
Y 

Proof For each a �9 A put 

a * = { f � 9  U y~ f(y)=f(1) and If(x)[>-e} 

Suppose f�9 By Remark 2.5, we obtain f � 9  Obviously 
A < f  1(0) and f ( x ) #  O. This is a contradiction. Thus ( - ' 1 ~  a*  = 0 .  Sets 
of  the form a*  (a  �9 A) are closed in the product  topological space [ - 1 ,  1] L, 
which is compact  by the TikhonotI  theorem. Therefore, there exists a finite 
Ax, ~ c A with ( ' ~ , ~  a*  = ~ .  QED 

Proof of the Theorem. For arbitrary x �9 L and e > 0 put 

ax,,~= U a 
c~ ~ Ax, ~ 

For every T c L let T denote the smallest, with respect to inclusion, sub- 
or tholat t ice of  L containing T. (Note that if T is countable, then T is 
countable.) Now, put L 1 = B, 

Lk+l = ~ ( k � 9  
x ~  Lk 

co 
and Lo = Ok=~ Lk. Let us show that Lo is a countable model of  L. 
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It is clear that L0 is a countable subortholattice of  L, L0 is dense in L, 
and A c L0. Suppose that f~  S(Lo). Then there exists g ~ F(L) satisfying 
g l a = f l a .  - Put h=f-g]L o. Then h~F(Lo). Take A~R\{0} such that 
IAh(x)]-< 1 for all x~Lo. Put 

q~(x)={~h(x) if xcLo 
if x c L\Lo 

Obviously ~0 ~ U. Let x ~ Lo. Since L1 c Lz c �9 �9 �9 c Lk c �9 �9  it follows that 
there exists k0cN satisfying k->ko~x~Lk. Since 3x,1/k=Lo (k->ko), 
we get Zy~= q~(y)=q~(1) for all k->ko and olGA~,l/k.  Hence [~(x)l<l/k 
(k-> ko). Thus q~(x)=0 and therefore f =  g]Lo" Since Lo is dense in L and 
g(x)  -> 0 (x ~ Lo) for a continuous function g, it follows that g ~ S(L). The 
uniqueness is obvious. QED 

3. J A U C H - P I R O N  PROPERTY 

A quantum logic (QL) (Ptfik and Pulmannov~, 1991) is a o-- 
or thocomplete  OMP, i.e., an OMP E such that for any sequence (xi) in E 
satisfying xi_l_ xj (i C j )  there exists the supremum V~=I x~ (usually written 
as ~=1  xi). 

Let E be a QL. A state on E is a mapping  f :  E--> R such that f ( E ) c  
[0, +oo), f (1 )  = 1, and f (~=l x,) =Y~,~I f(x,) for every sequence (x~) in E 
with the proper ty  x~ J_ xj (i C j) .  

Obviously if every chain in E is finite, then the concepts of  a state and 
a finitely additive state on E coincide. 

Let f be a state on E. Then f is said to be Jauch-Pi ron  providing 

x, y6E, f ( x )=f (y )=l  ~ 3 zcE  [z<-x,z<-y,f(z)=l] 
A QL E is called Jauch-Pi ron  if every state on E is Jauch-Piron.  
For  each n ~ N let L ( ~  n) denote the or thomodular  lattice of all sub- 

spaces of R n. Observe that L(R") is a QL whose every chain is finite. 

Proposition 3.1. I f  n->3, then there exists a countable Jauch-Pi ron  
subortholattice of  L(R") that is not a Boolean algebra.  

Proof By the theorem of  Gleason (1957), F(L(N")) is finite- 
dimensional. By Theorem 2.2, there exists a countable model L0 of L(R"). 
Since by the same theorem of  Gleason, L(R") is Jauch-Piron,  we simply 
obtain that Lo is Jauch-Piron,  too. Clearly any Boolean subalgebra of  L(R") 
is finite and thus its set of  all states has only a finite set of  extreme points. 
The set of  all extreme points of  S(L(R")) and hence of S(Lo) is obviously 
infinite. Thus Lo is not a Boolean algebra. QED 

The following corollary yields the affirmative answer to the question 
of  Pt~ik and Pulmannovfi (1991). 
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Recall that a QL E is called unital if for any x 6 E\{0} there exists a 
state f on E with f ( x )  = 1. 

Corollary 3.2. There exist unital and countable QLs which are Jauch- 
Piron and are not Boolean algebras. 

4. APPENDIX.  AXIOMS FOR Fo AND F 

Let E be an O M P  with 0 # 1. Put (as in the text) 

r0 = {{x, x ' ) lxc  E\{O, 1}} 

F={{x ,y ,  z I c  E k { O } l x + y + z  = 1} 

We also put 9 = E\{O, 1}. 
Clearly Fo is a partition of  9 consisting of two-element sets. We can 

identify such partitions with mappings o: 9 ~ 9 satisfying x ~ 9 ~ x ~176 
x ~ x ~ (one should take Fo = {{x, x~  c 9}). 

Obviously we can restore the OMP E with the help of 9,  Fo, and F: 

E = ~ w { 0 , 1 } ,  0 ' = 1 ,  1 '=0 ,  x ' = x  ~ ( x e ~ )  

and i fx ,  y ~ E ,  t h e n x < y - c ~ x = y o r x = 0  o r y = l  or x, y e N  and 3ze  
~({x, yO, z} e r). 

So, the question of axioms for F o and F arises. 
Let ~ be a set, let o: @ ___, 9 ,  satisfy 

X E 9  ~ X ~ 1 7 6  ~ 

and let F be a set of three-element subsets of  9. 
The following statement gives another characterization of OMPs. 

Theorem 4.1. (Ovchinnikov, 1983). The following two conditions are 
equivalent: 

1. There exists an O M P  E with 0 # 1, ~ = E\{O,  1 }, o= ,[~, and 

r = { { x , y ,  z i c  E \ { O I l x  + y + z =  1} 

2. (G,) 

and (G2) 

{x, a, b}, {x ~ c, d} ~ F ~ =ly c @ ({a, c, y} e F) 

{Xl, 22, 23} , {23, 24, 25} , {25, 16, Xl} E F, 21 ~ 24 

3y  ~ 9 ({Xl, x4 ~ y} e F) 
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