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Countable Jauch—Piron Logics
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It is shown that there exist non-Boolean unital and countable quantum logics
which are Jauch-Piron.

1. INTRODUCTION

The cardinality of Jauch-Piron logics appears to be a very important
aspect of the doctrine of the Jauch-Piron property (Jauch, 1968; Piron,
1976).

The finiteness conditions ensuring that a Jauch-Piron logic is a Boolean
algebra were examined by Riittimann (1977), Bunce et al (1985), and
Rogalewicz (1991). The definitive result was obtained by Rogalewicz, who
showed that the number of blocks of a unital Jauch-Piror orthomodular
poset is finite if and only if it equals 1.

On the other hand, Ptak and Pulmannova (1989, 1991) conjectured
that there are non-Boolean unital and countable Jauch-Piron logics. They
supposed that the corresponding examples might be fairly complicated.

A celebrated theorem of Gleason (1957) yields almost appropriate
examples, but unfortunately, uncountable ones.

In the present paper we develop a technique of countable models of
orthomodular lattices to prove the existence of non-Boolean countable
subortholattices of the orthomodular lattice of all subspaces of R", n=3,
inheriting the Jauch-Piron property. Of course, such logics are necessarily
unital.

2. COUNTABLE MODELS OF ORTHOMODULAR LATTICES

Recall that an orthomodular poset (OMP) (e.g., Ptak and Pulmannova,
1991} is a poset E with the greatest element 1 and an involutive antiauto-
morphism " E— FE satisfying the following conditions:
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(i) xeE=x+x'=1.
(ii) x, ye E, x<y=3ze E(y=x+2z).
(i) x, ye E,x L y=x+ y exists.
(Here for x, ye E we write x L y provided x <y’ and denote by x + y the
supremum of x and y in the case x L y.)
Obviously 0 £ 1’ is the smallest element of an OMP.
An orthomodular lattice (OML) (e.g., Kalmbach, 1983) is an OMP
that is a lattice.
Let E be an OMP. A function f: E >R is referred to as a finitely
additive one provided

x,y€E, xly = fx+ty)=f(x)+f(y)

Let F(E) denote the set of all finitely additive functions f: E — R that
are bounded (i.e., satisfy the condition sup, .z | f(x)| < +o0). Then F(E) is
obviously a vector space over R with respect to pointwise addition and
multiplication with scalars. [ Moreover, F(E) is a Banach space with respect
to the norm || f| =sup,. ¢ | /(x)| (fe F(E)).]

A finitely additive state on E is a finitely additive function f: E >R
such that f(E) < [0, +o0) and f(1) =1. Let S(E) denote the set of all finitely
additive states on E. Obviously S(E) is a convex subset of F(E).

Let L be an OML. A subset L,< L is said to be a subortholattice of
L if L, is a sublattice of L, 1€ Ly and xe Ly=x"€ L,.

Definition 2.1. A model of L is a subortholattice L, of L such that any
fe€ S(L,) can be uniquely extended to an element of S(L).
Now we state the main result of this section.

Theorem 2.2. If F(L)is finite-dimensional, then there exists a countable
model of L.

We start with two simple remarks of a very general character.

Let Q) be a set and V be a finite-dimensional subspace of the vector
space R of all functions f: Q~>R (throughout, operations on functions as
vectors are supposed to be pointwise) and suppose dim V = m. Let us endow
€} with the topology induced by V (i.e., the weakest topology in {} with
respect to which all functions f€ V are continuous).

Remark 2.3. There exists an m-element set A < {) such that any function
f: A->R can be uniquely extended to a function from V.

Proof. By induction, for each ke {0, ..., m} there exists A, < Q such
that card A, = k and any function f: A, - R can be extended to a function
from V. Put A=A,,. QED

Remark 2.4. The topological space () has a countable base. In par-
ticular, ) is separable.
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Proof. Take basic vectors ey, ..., e, € V. Consider finite intersections
of sets that are of the form ex'((a, b)), a, bR being rational. QED

Next, suppose dim F(L) = m. We endow L with the topology induced
by F(L). By Remark 2.3, there exists an m-element A< L such that any
function f: A—>R can be uniquely extended to a function from F(L). By
Remark 2.4, there exists a countable and dense B < L satisfying A< B. Put

U={f: L>[-1,1]]Au{0}=f7(0)}
and
A=T,ul
where
To={{x, x'}x e L\{0, 1}}
C={{x,y, z}c I\{0}|x+y+z=1}

Remark 2.5. Let f: L->R. It is easy to verify that f is finitely additive
if and only if f(0)=0and acA=}) __ f(x)=f(1). (The assertion as well
as the following lemma can be extended to arbitrary OMPs.)

Lemma 2.6. For every x € L and £ >0 there exists a finite set A, . < A
satisfying

fey, VaeAx,s< )} f(y)=f(1)> = |[f(x)<e

yea

Proof. For each a € A put

a*={f€ Ul X f(»)=f(1) and If(X)iES}

Suppose fef ),., @*. By Remark 2.5, we obtain fe F(L). Obviously
Ac f7'(0) and f(x)#0. This is a contradiction. Thus (), _, a*=. Sets
of the form a* (a € A) are closed in the product topological space [—1, 1],
which is compact by the Tikhonoff theorem. Therefore, there exists a finite

A, cAwith(),., a*=0. QED
Proof of the Theorem. For arbitrary x € L and £ >0 put
5)(,2 = U a
aely .

For every T< L let T denote the smallest, with respect to inclusion, sub-
ortholattice of L containing T. (Note that if T is countable, then T is
countable.) Now, put L, = B,
R ——
Lio=Lou U Ox1/k (keN)

xe Ly

and Ly= Ule Ly. Let us show that L, is a countable model of L.
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It is clear that L, is a countable subortholattice of L, L, is dense in L,
and Ac L,. Suppose that f< S(L,). Then there exists ge F(L) satisfying
gl,=fl,- Put h :f—gILD. Then he F(L,). Take AeR\{0} such that
[AR(x)|=1 for all xe L,. Put

Ah(x) if xel,

() {o if xeI\L,
Obviously ¢ € U. Let xe L. Since Lyc L,c---< L; - -- it follows that
there exists koeN satisfying k=k,=>xe L,. Since 8,,,,= Ly (k=k),
we get Y, ¢(y)=¢(1) for all k=k, and a €A, . Hence lp(x)|<1/k
(k= kgy). Thus ¢{(x)=0 and therefore f= g]LO. Since L, is dense in L and
g(x)=0 (x e Ly) for a continuous function g, it follows that ge S(L). The
uniqueness is obvious. QED

3. JAUCH-PIRON PROPERTY

A quantum logic (QL) (Ptdk and Pulmannovd, 1991) is a o-
orthocomplete OMP, i.e., an OMP E such that for any sequence (x;) in F
satisfying x; L x; (i #j) there exists the supremum \/i.’o=1 x; (usually written
as ETO:l xi)-

Let E be a QL. A state on E is a mapping f: E - R such that f(E)c<
[0, +00), f(1)=1, and f(Z?il xi)=2:ilf(x,») for every sequence (x;) in E
with the property x; L x; (i # j).

Obviously if every chain in E is finite, then the concepts of a state and
a finitely additive state on E coincide.

Let f be a state on E. Then f is said to be Jauch-Piron providing

x,yeE, f(x)=f(y)=1= 3zeE [z=x2z=y, f(z)=1]
A QL E is called Jauch-Piron if every state on E is Jauch—Piron.

For cach neN let L(R") denote the orthomodular lattice of all sub-
spaces of R”. Observe that L(R") is a QL whose every chain is finite.

Proposition 3.1. If n=3, then there exists a countable Jauch-Piron
subortholattice of L(R") that is not a Boolean algebra.

Proof. By the theorem of Gleason (1957), F(L(R")) is finite-
dimensional. By Theorem 2.2, there exists a countable model L, of L(R").
Since by the same theorem of Gleason, L(R") is Jauch-Piron, we simply
obtain that L, is Jauch-Piron, too. Clearly any Boolean subalgebra of L{R")
is finite and thus its set of all states has only a finite set of extreme points.
The set of all extreme points of S(L(R")) and hence of S(L,) is obviously
infinite. Thus L, is not a Boolean algebra. QED

The following corollary yields the affirmative answer to the question
of Ptdk and Pulmannova (1991).
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Recall that a QL E is called unital if for any x € E\{0} there exists a
state f on E with f(x)=1.

Corollary 3.2. There exist unital and countable QLs which are Jauch-
Piron and are not Boolean algebras.

4. APPENDIX. AXIOMS FOR I'y AND T
Let E be an OMP with 0 5 1. Put (as in the text)
Io={{x, x'}|x € E\{0, 1}}
I'={{x,y, z} = E\{O}|x+y+z=1}

We also put 9 = E\{0, 1}.

Clearly I'y is a partition of & consisting of two-element sets. We can
identify such partitions with mappings °: & > @ satisfying xe @ = x% =
x # x° (one should take I'y={{x, x°}| x € 9}).

Obviously we can restore the OMP E with the help of &, Iy, and I':

E=90{0,1}), 0'=1, 1'=0, x'=x° (xe9)

and if x, ye E, then x<y<x=yorx=0o0r y=1or x, ye% and dze
2({x,y% z} el).

So, the question of axioms for I'y and I arises.

Let @ be a set, let 1 2 — 9, satisfy

xeP = x¥ =x#x°

and let ' be a set of three-element subsets of .
The following statement gives another characterization of OMPs.

Theorem 4.1. (Ovchinnikov, 1983). The following two conditions are
equivalent:
1. There exists an OMP E with 0#1, 2=E\{0,1}, °="|,, and

I={{x,y, z}c E\{0}|x+y+z=1}
2. (Gy)
{x,a, b}, {x°cdlel = Aye D ({a,c, y}el)
and (G,)
{x1, X2, X3}, {x3, X4, X5}, {Xs, X6, x,} €T, x; £ x, =

3)’69 ({xlaxgay}er)
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